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Comment on ‘‘Critique of q-entropy for thermal statistics’’
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It was recently argued@M. Nauenberg, Phys. Rev. E67, 036114~2003!# that the theory sometimes referred
to as nonextensive statistical mechanics has no physical basis, for a considerable variety of reasons, including
the impossibility of measuring the temperature out of the Boltzmann-Gibbs~BG! theory. We comment here on
virtually all the physically and mathematically relevant issues, and point out what we consider to be severe
inadvertences contained in that paper. In particular, we factually argue, through computer simulations, the
validity of the zeroth principle of thermodynamics, and of the basic rules of thermometry for nonextensive
systems. This fact further supports the possible connection with the thermodynamics of nonextensive statistical
mechanics, which is already known to be consistent with the first, second, and third principles. All the
foundational steps~e.g., the uniqueness of the entropy and the stationary state distribution! have already been
established for nonextensive thermostatistics on similar grounds than those long known for BG statistics, the
former corresponding to power laws~expected for long-range interactions when sizeN divergesbeforetime t),
and the latter correspond to the BG exponential law~expected for long-range interactions whenN diverges
after t, as well as for short-range interactions inany diverging order forN and t). We conclude that the
invalidating arguments made by Nauenberg by no means apply.

DOI: 10.1103/PhysRevE.69.038101 PACS number~s!: 05.70.2a, 05.20.2y, 05.90.1m
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Recently published@1# was a quite long list of objection
about the physical validity for thermal statistics of the theo
sometimes referred to in the literature asnonextensive statis
tical mechanics. This generalization of Boltzmann-Gibb
~BG! statistical mechanics is based on the following expr
sion for the entropy:

Sq5k

12(
i 51
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pi
q

q21 S qPR;S15SBG[2k(
i 51

W

pi ln pi D .

~1!

For time and space economy, here I will address only a
selected points, hopefully the physically and/or logica
most relevant ones, within the long list of objections a
critical statements in Ref.@1#.

The nonextensivity of the entropy Sq : The entropySq is
nonextensive for independent systems@see Eq.~6! of Ref.
@1##, which by no means implies that it cannot be extensiv
the presence of correlations at all scales. In Ref. @1# there is
no clear evidence of taking this fact into account in wh
concerns the validity of theq-thermostatistics. It is neverthe
less of crucial importance, as we illustrate now for the sim
case of equiprobability~i.e.,pi51/W, ; i ). In such a simple
situation, Eq.~1! becomes

Sq5k lnqW @ lnq x[~x12q21!/~12q!; ln1 x5 ln x#.
~2!

If a system constituted byN elements is such that it can b
divided into two or more essentially independent subsyste
~e.g., independent dices, or spins interacting through sh
range coupling!, we generically haveW;mN (m.1). Con-
sequently, Sq /k; lnq mN. There is a unique value ofq,
namely,q51, for which we obtain the usual resultSq}N.
1063-651X/2004/69~3!/038101~6!/$22.50 69 0381
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But if the system is such that we haveW;Nr (r.0), then
Sq /k; lnq Nr. Once again, there is a unique value ofq,
namelyq5121/r for which,Sq}N ~see Refs. 5,6,14 of Ref
@1#!. The same property holds in fact forSs(q) , s(q) being
any smooth function ofq such thats(1)51 ~e.g.,s51/q,
or s522q). For the correlated case, we haveSs(q)}N only
for q satisfying@12s(q)#r51. The relevance of this prop
erty (S}N) for thermodynamics needs, we believe, no fu
ther comment.

About the concept of ‘‘weak coupling’’ in Ref. [1]: Much
of the criticism in Ref.@1# involves the concept of ‘‘weak
coupling.’’ To make this point clear through an illustratio
let us think of the ground state of a Hamiltonian many-bo
classical system whose elements are localized on
d-dimensional lattice and have two-body interactions amo
them. Let us further assume that the~attractive! coupling
constant is given byCi j 52c/r i j

a (c.0, a>0, and r i j
>1). The potential energyU(N) per particle generically sat
isfies U(N)/N}2c( iÞ j1/r i j

a .2c*1
N1/d

drr d21r 2a}2cN*
@with N* [(N12a/d21)/(12a/d)]. Therefore, fora/d.1
~short-range interactions in the present context!, we have
that limN→` U(N)/N is finite, and BG statistical mechanic
certainly provides the appropriate answer for the station
state~thermal equilibrium! of the system. In this case, all th
usual prescriptions of thermodynamics are satisfied, as
known@2#. If the interactions are, however,long ranged~i.e.,
0<a/d<1), then limN→` U(N)/N diverges, and the cas
needs further discussion. It might well happen that, dyna
cally speaking, theN→` and t→` limits do not commute.
If so, only the limN→` limt→` ordering corresponds to th
BG stationary state, whereas the opposite order
limt→` limN→` , might be a complex one,different from the
BG state, and in some occasions possibly related to the
obtained within theq formalism. It is clear then that, if we
have long-range interactions andN@1 ~say of the order of
the Avogadro number!, it might very well happen that the
©2004 The American Physical Society01-1



ly

u

n-

s

er
ed

ng

n
t

h
. B
x-

ll
e

at

ac
-
s

s
y

is

i-

th
a
u

w

ar
d

s

s-
te

he-

t-
the
ies
ve

r-

ons
a

al

di-

w-
of

one
the

est

st

em
’s

es
y,
n,
s

s.

one-
e

ri-
-
e

COMMENTS PHYSICAL REVIEW E 69, 038101 ~2004!
BG equilibrium is physically inaccessible, and the on
physically relevant stationary or quasistationary~metastable!
state is a non-Gibbsian one. Such a situation is indeed fo
in Ref. @3#, as discussed below.

We can now address the manner used in Ref.@1# to refer
to ‘‘weak coupling.’’ It applies essentially in the simple ma
ner stated in Ref.@1# only for a/d.1, beingconceptually
much more subtlefor 0<a/d<1. For example, if 0<a/d
,1, U(N)/N divergesasN12a/d (N→`) for any nonvan-
ishing value ofc, even forc corresponding to . . . 10210eV!
Consistently, thegenericuse, without further consideration
@such as the (N,t)→(`,`) limits, and the range ofa/d], of
relations such as Eqs.~5! and ~7! of Ref. @1# seems irreduc-
ibly unjustified; as they stand, they trivially yield to no oth
possibility thanq51. In fact, Fermi transparently address
this point in 1936@4#.

About the determination of q for a given system:The en-
tropic parameterq is referred to in Ref.@1# as an ‘‘undeter-
mined parameter.’’ Moreover, the author claims, havi
proved that ‘‘q must be auniversal constant, just like the
Boltzmann constantk . . . .’’ I have difficulty in unambigu-
ously finding in the paper whether this kind of stateme
would only apply to Hamiltonian systems, or perhaps also
dissipative ones; to systems whose phase space is hig
mensional, or perhaps also to the low-dimensional ones
‘‘undetermined,’’ it remains not totally clear whether the e
pression is used in the sense thatq is ‘‘undeterminable,’’ or
in the sense of ‘‘not yet determined.’’ However, if we put a
this together, one might suspect that what is claimed in R
@1# is that itcanbe determined from first principles, and th
the author has determined it to necessarily beq51.

To make this point transparent, we may illustrate the f
tual nonuniversalityof q by addressing the logisticlike fam
ily of maps xt11512auxtuz, whose usefulness in physic
can hardly be contested~at least forz52). As conjectured
since 1997@5#, numerically exhibited in many occasion
~e.g., in Refs. @6–9#!, and analytically proved recentl
@10,11# on renormalization group grounds,q does depend on
z, and is thereforenot universal, in neat contrast with what
claimed in Ref.@1#. Its value for z52 ~i.e., the standard
logistic map!, as given by the sensitivity to the initial cond
tions, is q50.244487 . . . at the edge of chaos~e.g., a
51.401155 . . . ), whereas it isq51 for all values ofa for
which the Lyapunov exponent is positive~e.g., for a52).
We have illustrated the nonuniversality ofq for nonlinear
dynamical systems with its value at the edge of chaos of
logistic map. It is perhaps worthy to notice that, since it h
been proved to be analytically related to the Feigenba
universal constantaF @1/(12q)5 ln aF /ln 2#, and since this
constant is already known with not less than 1018 digits,
actually know this particular value ofq with the same num-
ber of digits. Such a precision is self-explanatory with reg
to the fact thatq canbe determined from first principles an
that it can be different from unity~also see Refs.@12,13#!.

Given the preceding illustrations of dissipative system
and many others existing in the literature~e.g., Ref.@14#!, it
could hardly be a big surprise if,also for many-body Hamil-
tonian systems,q turned out to be a nonuniversal index e
sentially characterizing what we may consider as nonex
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sivity universality classes~in total analogy with the
universality classes that emerge in the theory of critical p
nomena!. More precisely, one expectsq51 for short-range
interactions (a/d.1 in the example we used earlier!, andq
depending on (d,a) ~perhaps only ona/d) for long-range
interactions~i.e., 0<a/d,1), in the physically most impor-
tant ordering limt→` limN→` . Although expected, uncontes
able evidence has not yet been provided. It is not hard for
reader to imagine the analytic and computational difficult
that are involved. Nevertheless, the following points ha
already been established in the literature.

~i! The one-body marginal distribution of velocities du
ing the well known longstanding quasi-stationary~meta-
stable! state of the isolated classical inertialXY ferromagneti-
cally coupled rotators localized on ad-dimensional lattice
can be anomalous~i.e., non-Maxwellian!. Indeed, it ap-
proaches, for a non-zero-measure class of initial conditi
of the a50 (; d) model and not too high velocities,
q-exponential distribution „we recall that eq

x[@11(1
2q)x#1/(12q), hencee1

x5ex
… with q.1 @3#. If the energy

distribution followed BG statistics, the one-body margin
distribution of velocities ought to be quasi-Maxwellian
~strictly Maxwellian in the N→` limit since then the
microcanonical-ensemble necessary cutoff in velocities
verges!, but it isnot. As specifically discussed in Ref.@3#, the
numerical results are incompatible with BG statistics. Ho
ever, they do not yet prove that the one-body distribution
velocities precisely is, for the canonical ensemble, the
predicted by nonextensive statistics. Indeed, considering
appropriate limit (N,M ,N/M )→(`,`,`) (N being the
number of rotators of the isolated system, andM being that
of a relatively small subsystem of it! is crucial. Work along
this line is in progress.

~ii ! In the same model, at high total energy, the larg
Lyapunov exponent vanishes like 1/Nk wherek depends on
a/d @15,16#. Also during the longstanding state, the large
Lyapunov exponent vanishes, this time like 1/Nk/3 @17#. It is
clear that, with a vanishing Lyapunov spectrum, the syst
will be seriously prevented from satisfying Boltzmann
‘‘molecular chaos hypothesis,’’ hence the~microcanonical!
‘‘equal probability’’ occupation of phase space.

~iii ! In the longstanding regime of thea50 (;d) model,
there isaging @18#, something which istotally incompatible
with the usual notion of thermal equilibrium. The correlation
functions depend on the ‘‘waiting time,’’ and are in all cas
given byq-exponential functions. Even at high total energ
where the one-body distribution of velocities is Maxwellia
and where there isno aging, the time correlation function
arestill given byq-exponentials withq.1, instead of expo-
nentials, which is the standard expectation in BG statistic

~iv! The temperature (} mean kinetic energy per particle!
relaxes, after the metastable state observed in the
dimensional 0<a,1 model, onto the BG temperatur
through aq-exponential function withq.1 @19#.

~v! In Lennard-Jones clusters of up toN514 atoms, the
distribution of the number of links per site has been nume
cally computed@20#, where two local minima of the many
body potential energy are ‘‘linked’’ if and only if they ar
1-2
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COMMENTS PHYSICAL REVIEW E 69, 038101 ~2004!
separated by no more than one saddle-point. This distribu
is a q exponential withq.2, as can be checked through
direct fitting. The possible connection with our present d
cussion comes from the fact that the average diameter o
cluster is ~in units of atomic size! of the order of 141/3

.2.4. Consequently, although the Lennard-Jones interac
is not a long-range one thermodynamically speaking~indeed,
a/d56/352.1), it can effectively be considered as su
for small clusters, since all the atoms substantially inter
with all the others.

~vi! The distribution of the number of links per node f
the Albert-Barabasi growth model@21# yielding scale-free
networks is analytically established to be, in the station
state, aq exponential withq5@2m(22r )112p2r #/@m(3
22r )112p2r #>1, where (m,p,r ) are microscopic pa-
rameters of the model. If we associate ana50 interaction
per link to this network, the just mentioned distribution al
represents the distribution of energies per node. Altho
this is not the same distribution as that of the energy
microscopic states associated with a Hamiltonian, it is n
ther very far from it@22#.

~vii ! At this point let us mention some results, not man
body problem, that have been obtained with thed52 stan-
dard map and with ad54 set of two coupled standard map
Both systems areconservativeandsimplectic, therefore hav-
ing the dynamical setup of a standard Hamiltonian. Thed
54 system undergoes Arnold diffusion as soon as the n
linear coupling constanta is different from zero; this guar
antees a chaotic sea which is singly connected in phase s
~we may say thatac50). The structure is more complex fo
the d52 case because no such diffusion is present; con
tently, unlessa is sufficiently large, disconnected chaot
‘‘lakes’’ are present in the phase space; belowac
50.97 . . . , closed KAM regions emerge in the problem
The remark that we wish to do here is that, in strong anal
with the many-body long-range Hamiltonian cases we h
been discussing, both thed52 and 4 maps present long
standing quasistationary statesbefore crossing over to the
stationary ones. The crossover timetcrossoverdiverges whena
approachesac from above. This is very similar to what hap
pens with the above (d,a) Hamiltonian, for which strong
numerical evidence exists@3,17,23# suggesting thattcrossover
diverges as (N12a/d21)/(12a/d) whenN→`.

Although none of the~seven! factual arguments that w
have just presented constitutes a proof, the set of them
does provide, in our understanding, a quite strong sugges
that the longstanding quasistationary states existing in lo
range many-body Hamiltonians might be intimately co
nected to the nonextensive statistics, withq depending on
basic model parameters such asd anda. The entropic index
q would then characterizeuniversality classes of nonexten
sivity, the most famous of them being naturally theq51,
extensive, universality class. Such a viewpoint is also c
sistent with the discussion of non-Gibbsian statistics p
sented in Ref.@24#. Last but by no means least, it is cons
tent with Einstein’s 1910 criticism of the Boltzman
principle S5k ln W ~lengthily commented upon in Ref. 6 o
Ref. @1#!.

About thermal contact between systems with different
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ues of q and the zeroth principle of thermodynamics:We
now focus on a strong and crucial statement in Ref.@1#,
namely ‘‘ . . . a Boltzmann-Gibbs thermometer would not b
able to measure the temperature of aq-entropic system, and
the laws of thermodynamics would therefore fail to ha
general validity.’’@1#. Here we shall present the results@30#
of molecular-dynamical simulations~using only F5ma as
microscopic dynamics! which will essentially exhibit what is
claimed in Ref.@1# to be impossible. We shall illustrate thi
with the isolateda50 model of planar rotators, and procee
through two steps.

We first show~Fig. 1! how the ‘‘temperature’’~defined as
twice the instantaneous kinetic energy per particle! of a rela-
tively small part of a large system relaxes onto the ‘‘tempe
ture’’ of the large systemwhile this is in the quasistationary
regime ~where the system has been definitely shown to
non-Boltzmannian, and where it might well be described
theq statistics!. We verify that the rest of the system acts f
a generic small part of itself as a ‘‘thermostat,’’in total anal-
ogy with what happens in BG thermal equilibrium. This is
quite remarkable if we think that the system is in a stateso

FIG. 1. Time evolution of the temperatureTmicrocanonical

[2K(N)/N @K(N)[total kinetic energy# of one isolated system
started with waterbag initial conditions at~conveniently scaled!
energy per particle equal to 0.69 (N55000 rotators; green line!,
and of the temperature Tcanonical[2K(M )/M @K(M )
[subsystem total kinetic energy# of a part of it (M5500 rotators;
blue line!. The M rotators were chosen such that their temperat
Tcanonical was initially below ~a! or above ~b! that of the whole
system. It is particularly interesting the fact that, in case~b!, the
temperature of the subsystem ofM rotators crosses the BG temper
ture TBG50.476 withoutany particular detection of it.
1-3
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COMMENTS PHYSICAL REVIEW E 69, 038101 ~2004!
different from thermal equilibrium that it even has aging!
We then show~Fig. 2! how a BG thermometer~its internal

degrees of freedom are those offirst-neighbor-couplediner-
tial rotators, hence definitively aq51 system! doesmeasure
the ‘‘temperature’’ of theinfinitely-range-coupledinertial ro-
tators during their quasistationary state, where the statisti
definitely non-Boltzmannian. In light of this evidence, it ap
pears that the zeroth principle of thermodynamics is e
more general than the already important role that BG sta
tical mechanics reserves for it. Naturally, the fluctuations t
we observe in both figures are expected to disappear in
(N,M ,N/M )→(`,`,`) limit.

The facts that we have mentioned up to this point hea
disqualify the essence of the critique presented in Ref.@1#. I
believe, nevertheless, that it is instructive to further anal
it.

About the existing mathematical foundations of nonext
sive statistical mechanics:It is essentially claimed in Ref.@1#
that it can be proved, from the very foundations of statisti
mechanics, that the only physically admissible method is
of BG. It is, however, intriguing how such a strong statem

FIG. 2. Time evolution of the temperatureTthermostat

[2K(N)/N @K(N)[thermostat total kinetic energy# of one
infinitely-range-coupled large system~thermostat! started with
waterbag initial conditions (N51000 00 rotators; green line! and
of the temperature Tthermometer[2K(M )/M @K(M )
[thermometer total kinetic energy# of one first-neighbor-coupled
relatively small system~thermometer! started at Maxwellian equi-
librium at a temperature below that of the thermostat (M550 rota-
tors; blue and red lines!. The large system is in a quasistationa
state~where it is aging!; its ~conveniently scaled! energy per par-
ticle equals 0.69. The thermometer-thermostat contact is assure
only one bond per thermometer rotator, and starts at timetcontact.
The intrathermostat and intrathermometer coupling constants e
unity; the thermostat-thermometer coupling constant equals 0.
The thermalization of the thermometer occurs at the thermo
temperature, and up to timet533105, exhibits no detection of the
BG equilibrium temperatureTBG50.476. The same phenomeno
with the thermometer initial temperature beinglarger than that of
the thermostat, is not shown, because our numerical results su
that theN@M@1 limit has to be satisfied in an even more stringe
manner due to the relatively large fluctuations ofTthermometer. For
clarity, not all the points of the curves have been represented,
they have been instead logarithmically decimated.
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may be made without clearly pointing out the mathemati
errors that should then exist in the available proofs of
q-exponential distribution. Such proofs have been provid
by Abe and Rajagopal@25,26#; they are multiple, mutually
consistent, and generalize the well known proofs done,
BG statistics, by Darwin and Fowler~in 1922!, Khinchin ~in
1949! and Balian and Balazs~in 1987!, respectively, using
the steepest-descent method, the laws of large numbers
the counting for the microcanonical ensemble@25#. All these
proofs are ignored in Ref.@1#. The critique therein develope
outcomes severely diminished.

Similarly, no mention at all is made in Ref.@1# of the q
generalizations of the Shannon~1948! theorem, and of the
Khinchin ~1953! theorem, which are universally considere
as parts of the foundations of BG statistical mechanics si
they prove under what conditionsSBG is unique. These twoq
generalizations@27# analogously exhibit the necessary a
sufficient conditions associated with the uniqueness ofSq .

Finally, no mention at all is made of the fact thatSq
(;q.0) shares withSBG three remarkable mathematic
properties that are quite hard to satisfy,especially simulta-
neously. These three properties areconcavity~Ref. 1 of Ref.
@1#!, stability @28#, andfiniteness of entropy production pe
unit time ~see Ref.@29#, among others!. The difficulty of
having such agreeable mathematical features can be
ceived by the fact that Renyi entropy~Eq. ~19! of Ref. @1#!,
for instance, satisfiesnoneof them for abitraryq.0.

It is perhaps for not paying due attention to all these th
rems that the cyclic argument involving Eqs.~22!–~26! of
Ref. @1# has been included in the critique. Indeed, that ar
ment uses Eq.~22! to ‘‘prove’’ Eq. ~26!. Such a consistency
can hardly be considered as surprising since the distribu
in Eq. ~22! is currently establishedprecisely using the BG
entropy, i.e., the form of Eq.~26!. By the way, immediately
after Eq.~26! we read ‘‘providedf (1)5 f (0)50, which cor-
responds to the requirement that the entropy vanishesT
50.’’ It is in fact only f (1)50 which is related to the van
ishing entropy atT50. The propertyf (0)50 has in general
nothing to do with it; it is instead related to theexpansibility
of the entropy, i.e., the fact thatS(p1 ,p2 , . . . ,pW,0)
5S(p1 ,p2 , . . . ,pW).

About the escort distribution:The precise formulation of
nonextensive statistical mechanics has, since 1988, evo
along time in what concerns the way of imposing the aux
iary constraints under whichSq is optimized~see Refs. 1–3
of @1#!. The paradigmatic case occurs for the canonical
semble, where one must decide how to generalize the tr
tional energy constraint. The correct manner is nowad
accepted to be that indicated in Ref. 3 of@1#, i.e., Eq.~3! of
Ref. @1#, namely,

( i 51
W pi

qe i

( j 51
W pj

q
5Uq ~3!

This particular writing of the energy constraint has vario
interesting features. Let us mention three of them here~fur-
ther convenient features can be found in Ref. 3 of Ref.@1#!.
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COMMENTS PHYSICAL REVIEW E 69, 038101 ~2004!
~i! It is precisely this form which emerges naturally with
the steepest-descent proof@25# of the q statistics. It is a
trivial consequence of the fact thatdeq

x/dx5(eq
x)q.

~ii ! This particular form causes the theory to be, in wh
concerns the energy distribution, valid up to asinglevalue of
q, namely,preciselythat determined by the trivial constrain
( i 51

W pi51. Let us illustrate this in the continuum limit, for
typical example where the density of statesg(e)}eg for e
→` (gPR). Since we wishp(e) to be normalizable, we
must impose that*constant

` deg(e)p(e). Sincep(e)}e1/(12q)

for e→`, it must be q,(21g)/(11g) (q,2 for the
simple case of an asymptotically constant density of sta
i.e.,g50). Precisely the same upper boundfor q is obtained
by imposing the finiteness of constraint~3!, as can be seen
by analyzing*constant

` deg(e)e@p(e)#q. In other words, and
interestingly enough, the use of escort distributions cau
both constraints~norm and energy! to be mathematically
well defined in the theory~i.e., given byfinite numbers! all
the way up to a single upper bound for q.

~iii ! This structure~based on escort distributions! for the
energy constraint allows the construction of a quite gen
entropic form@31# which is extremized by the Beck-Cohe
superstatistics@32#, and which, quite remarkably, is stab
~like Sq , and in variance with Renyi entropy!.

Conclusion:We have essentially argued here that the
sis of the critique in Ref.@1# appears to be inconsistent wit
very many, and by now well established, physical and ma
ematical facts. We have addressed not all but only the m
mispaths and inadvertences in Ref.@1#. Let us now summa-
rize the main points of the present Comment.

~i! In what concerns a crucial difference between sho
and long-range interactions, we stress that, ifa/d.1,
-

fte
e
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limN→` limc→0 cN* 5 limc→0 limN→` cN* 50, whereas, if
0<a/d<1, limN→` limc→0 cN* 50 but
limc→0 limN→` cN* →`. This is the basic point which is
missed in Ref.@1#. It appears that this simple mathematic
feature is deeply related to the fact that, for short-range
teractions, we expect BG statisticsindependentof the N
→` and t→` ordering, whereas, for long-range intera
tions, we still expect BG statisticsonly if t diverges first, but
we expect something different, for example nonextens
statistics, ifN diverges first.For large systems, only the las
possibility is physically achievable.

~ii ! A remarkable foundational work~uniqueness of the
entropy Sq and its optimizing distribution, stability ofSq ,
and others! is available in the literature~e.g., Refs.
@25,27,28#! which generalizes step by step the availab
foundational work available for BG statistical mechanics.
yields a power law for the stationary-state energy distrib
tion, instead of the usual BG exponential law.

~iii ! Figures 1 and 2 exhibit that, in striking contrast wi
what is stated in Ref.@1#, the zeroth principle of thermody
namics does appear to emerge in a indisputablynon-BG
~metastable! state. This fact further supports the possib
thermodynamical connection of nonextensive statistical m
chanics, which is already known@33# to be consistent with
the first, second, and third thermodynamical principles.

Our overall conclusion is that, although several importa
and/or interesting points related to nonextensive statist
mechanics still need further clarification, this theory u
doubtedly nowadays exhibits a sensible number of physic
and mathematically consistent results. Of course, as it
always been, only time will establish its degree of scient
utility in theoretical physics and elsewhere.
di-

ns

s.

E

ira,

.

v-
d
,

@1# M. Nauenberg, Phys. Rev. E67, 036114~2003!.
@2# M.E. Fisher, Arch. Ration. Alech. Anal.17, 377 ~1964!; J.

Chem. Phys.42, 3852~1965!; J. Math. Phys.6, 1643~1965!;
M.E. Fisher and D. Ruelle,ibid. 7, 260 ~1966!; M.E. Fisher
and J.L. Lebowitz, Commun. Math. Phys.19, 251 ~1970!.

@3# V. Latora, A. Rapisarda, and C. Tsallis, Phys. Rev. E64,
056134~2001!; also see F.D. Nobre and C. Tsallis,ibid. 68,
036115~2003!; C. Tsallis, inNonextensive Entropy - Interdis
ciplinary Applications, edited by M. Gell-Mann and C. Tsallis
~Oxford University Press, New York, 2004!.

@4# E. Fermi, Thermodynamics~Dover, New York, 1936! @‘‘The
entropy of a system composed of several parts is very o
equal to the sum of the entropies of all the parts. This is tru
the energy of the system is the sum of the energies of all
parts and if the work performed by the system during a tra
formation is equal to the sum of the amounts of work p
formed by all the parts. Notice that these conditions are
quite obvious and that in some cases they may not be fulfil
Thus, for example, in the case of a system composed of
homogeneous substances, it will be possible to express
energy as the sum of the energies of the two substances on
we can neglect the surface energy of the two substances w
they are in contact. The surface energy can generally be
n
if
e
-

-
t
.
o
he
if
re

e-

glected only if the two substances are not very finely sub
vided; otherwise, it can play a considerable role.’’#.

@5# C. Tsallis, A.R. Plastino, and W.-M. Zheng, Chaos, Solito
Fractals8, 885 ~1997!.

@6# U.M.S. Costa, M.L. Lyra, A.R. Plastino, and C. Tsallis, Phy
Rev. E56, 245 ~1997!.

@7# M.L. Lyra and C. Tsallis, Phys. Rev. Lett.80, 53 ~1998!.
@8# F.A.B.F. de Moura, U. Tirnakli, and M.L. Lyra, Phys. Rev.

62, 6361~2000!.
@9# E.P. Borges, C. Tsallis, G.F.J. Ananos, and P.M.C. Olive

Phys. Rev. Lett.89, 254103~2002!.
@10# F. Baldovin and A. Robledo, Europhys. Lett.60, 518 ~2002!.
@11# F. Baldovin and A. Robledo, Phys. Rev. E66, 045104~R!

~2002!.
@12# A. Plastino, Science300, 250 ~2003!.
@13# V. Latora, A. Rapisarda, and A. Robledo, Science300, 250

~2003!.
@14# G.A. Tsekouras, A. Provata, and C. Tsallis, Phys. Rev. E69,

016120~2004!; B.M. Boghosian, P.J. Love, P.V. Coveney, I.V
Karlin, S. Succi, and J. Yepez, Phys. Rev. E68, 025103
~2003!; B.M. Boghosian, P.J. Love, J. Yepez, and P.V. Co
eney, in Anomalous Distributions, Nonlinear Dynamics an
Nonextensivity, edited by H. L. Swinney and C. Tsallis
1-5



tt

. E
,
x

ra
-

ys.

ys.

nd

t,

COMMENTS PHYSICAL REVIEW E 69, 038101 ~2004!
~Elsevier, Amsterdam, in press!.
@15# C. Anteneodo and C. Tsallis, Phys. Rev. Lett.80, 5313~1998!.
@16# A. Campa, A. Giansanti, D. Moroni, and C. Tsallis, Phys. Le

A 286, 251 ~2001!.
@17# B.J.C. Cabral and C. Tsallis, Phys. Rev. E66, 065101~R!

~2002!.
@18# M.A. Montemurro, F. Tamarit, and C. Anteneodo, Phys. Rev

67, 031106~2003!; A. Pluchino, V. Latora, and A. Rapisarda
in Anomalous Distributions, Nonlinear Dynamics and None
tensivity~Ref. @14#!.

@19# C. Tsallis, A. Rapisarda, V. Latora, and F. Baldovin, inDynam-
ics and Thermodynamics of Systems with Long Range Inte
tions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilk
ens, Lecture Notes in Physics, Vol. 602~Springer, Berlin,
2002!.

@20# J.P.K. Doye, Phys. Rev. Lett.88, 238701~2002!.
@21# R. Albert and A.L. Barabasi, Phys. Rev. Lett.85, 5234~2000!.
@22# F. Baldovin, E. Brigatti, and C. Tsallis, Phys. Lett. A320, 254

~2004!.
@23# A. Campa, A. Giansanti, and D. Moroni, Physica A305, 137

~2002!.
03810
.

-

c-

@24# A.C.D. van Enter, R. Fernandez, and A.D. Sokal, J. Stat. Ph
72, 879 ~1993!.

@25# S. Abe and A.K. Rajagopal, J. Phys. A33, 8733~2000!; Euro-
phys. Lett. 52, 610 ~2000!; Phys. Lett. A272, 341 ~2000!;
Europhys. Lett.55, 6 ~2001!.

@26# S. Abe and A.K. Rajagopal, Science300, 249 ~2003!.
@27# R.J.V. Santos, J. Math. Phys.38, 4104 ~1997!; S. Abe, Phys.

Lett. A 271, 74 ~2000!.
@28# S. Abe, Phys. Rev. E66, 046134~2002!.
@29# V. Latora, M. Baranger, A. Rapisarda, and C. Tsallis, Ph

Lett. A 273, 97 ~2000!. Also see theq generalization of Pesin
theorem, conjectured in Ref.@5#, and recently proved for a
large class of nonlinear dynamical systems by F. Baldovin a
A. Robledo, preprint cond-mat/0304410.

@30# L.G. Moyano, F. Baldovin, and C. Tsallis, preprin
cond-mat/0305091.

@31# C. Tsallis and A.M.C. Souza, Phys. Rev. E67, 026106~2003!;
A.M.C. Souza and C. Tsallis, Phys. Lett. A319, 273 ~2003!.

@32# C. Beck and E.G.D. Cohen, Physica A321, 267 ~2003!.
@33# S. Abe and A.K. Rajagopal, Phys. Rev. Lett.91, 120601

~2003!.
1-6


