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It was recently arguefM. Nauenberg, Phys. Rev. &7, 036114(2003] that the theory sometimes referred
to as nonextensive statistical mechanics has no physical basis, for a considerable variety of reasons, including
the impossibility of measuring the temperature out of the Boltzmann-GBG$ theory. We comment here on
virtually all the physically and mathematically relevant issues, and point out what we consider to be severe
inadvertences contained in that paper. In particular, we factually argue, through computer simulations, the
validity of the zeroth principle of thermodynamics, and of the basic rules of thermometry for nonextensive
systems. This fact further supports the possible connection with the thermodynamics of nonextensive statistical
mechanics, which is already known to be consistent with the first, second, and third principles. All the
foundational stepge.g., the uniqueness of the entropy and the stationary state distribnéee already been
established for nonextensive thermostatistics on similar grounds than those long known for BG statistics, the
former corresponding to power lawsxpected for long-range interactions when $iz@ivergesbeforetimett),
and the latter correspond to the BG exponential {@wpected for long-range interactions whidrdiverges
after t as well as for short-range interactions any diverging order forN andt). We conclude that the
invalidating arguments made by Nauenberg by no means apply.
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Recently publishedl1] was a quite long list of objections But if the system is such that we haVé~N?* (p>0), then
about the physical validity for thermal statistics of the theoryS,/k~In,;N°. Once again, there is a unique value qf
sometimes referred to in the literatureramextensive statis- namelyq= 21— 1/p for which, S,=N (see Refs. 5,6,14 of Ref.
tical mechanics This generalization of Boltzmann-Gibbs [1]). The same property holds in fact &), o(q) being
(BG) statistical mechanics is based on the following expresany smooth function ofj such thato(1)=1 (e.g.,o=1/q,
sion for the entropy: oro=2-—q). For the correlated case, we hagg =N only

for g satisfying[1—o(q) ]Jp=1. The relevance of this prop-

w erty (S=<N) for thermodynamics needs, we believe, no fur-
1_.21 p{ w ther comment.
_ = e - _ _ About the concept of “weak coupling” in Ref. [1Much
Sy=k q—1 GeRi$1=Ssc "21 pilnp; . of the criticism in Ref.[1] involves the concept of “weak

(1) coupling.” To make this point clear through an illustration,
let us think of the ground state of a Hamiltonian many-body
For time and space economy, here | will address only a fewlassical system whose elements are localized on a
selected points, hopefully the physically and/or logically d-dimensional lattice and have two-body interactions among
most relevant ones, within the long list of objections andthem. Let us further assume that tfettractive coupling
critical statements in Refl]. constant is given byC;j=—c/r{j (¢>0, a=0, andr;
The nonextensivity of the entropy,:SThe entropyS, is ~ =1). The potential energy (N) per particle generically sat-
nonextensive for independent systefsse Eq.(6) of Ref.  jsfies U(N)/Noc—cE#jllrﬁz—cf'i‘l/ddrrd‘lr‘“oc—CN*
[1]], which by no means implies that it cannot be extensive ifiwith N*=(N'~*4—1)/(1— a/d)]. Therefore, fora/d>1
the presence of correlations at all scalés Ref.[1] there is  (short-rangeinteractions in the present contgxtve have
no clear evidence of taking this fact into account in whatthat limy_.., U(N)/N is finite, and BG statistical mechanics
concerns the validity of thg-thermostatistics. It is neverthe- certainly provides the appropriate answer for the stationary
less of crucial importance, as we illustrate now for the simplestate(thermal equilibrium of the system. In this case, all the
case of equiprobabilitfi.e.,p;=1/MW, V i). In such a simple usual prescriptions of thermodynamics are satisfied, as well

situation, Eq.(1) becomes known[2]. If the interactions are, howevédong ranged(i.e.,
0<a/d=<1), then lim_. U(N)/N diverges, and the case
Sy=kIngW [Ingx=(x*"9-1)/(1—q); In;x=Inx]. needs further discussion. It might well happen that, dynami-

(2 cally speaking, théN—« andt— o« limits do not commute.
If so, only the limy_., lim,_,., ordering corresponds to the
If a system constituted b elements is such that it can be BG stationary state, whereas the opposite ordering,
divided into two or more essentially independent subsystemtm,_ ., limy_,.., might be a complex ondalifferentfrom the
(e.g., independent dices, or spins interacting through shorBG state, and in some occasions possibly related to the one
range coupling we generically havéV~ uN (u>1). Con-  obtained within theq formalism. It is clear then that, if we
sequently, S;/k~1Ing uN. There is a unique value ofl,  have long-range interactions aht>1 (say of the order of
namely,q=1, for which we obtain the usual resu8=N. the Avogadro numbey it might very well happen that the
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BG equilibrium is physically inaccessible, and the only sivity universality classes(in total analogy with the
physically relevant stationary or quasistationametastable  universality classes that emerge in the theory of critical phe-
state is a non-Gibbsian one. Such a situation is indeed foundomena. More precisely, one expectg=1 for short-range
in Ref.[3], as discussed below. interactions @/d>1 in the example we used earligandq

We can now address the manner used in REfto refer  depending ond,a) (perhaps only orw/d) for long-range
to “weak coupling.” It applies essentially in the simple man- interactiong(i.e., 0<a/d<1), in the physically most impor-
ner stated in Ref{1] only for a/d>1, beingconceptually tant ordering lim ... limy_.... Although expected, uncontest-
much more subtléor O<a/d<1. For example, if &a/d  aple evidence has not yet been provided. It is not hard for the
<1, U(N)/N divergesasN'~*/¢ (N—) for anynonvan-  reader to imagine the analytic and computational difficulties

Shi i 10 . : :
ishing value ofc, even forc correspondingd. .. 10 eVl that are involved. Nevertheless, the following points have
Consistently, thegenericuse, without further considerations already been established in the literature.

[such as theN,t)— (%,») limits, and the range o#/d], of
relations such as Eq¢5) and(7) of Ref.[1] seems irreduc-
ibly unjustified; as they stand, they trivially yield to no other
possibility thang= 1. In fact, Fermi transparently addressed
this point in 19344].

About the determination of g for a given systerhe en-

(i) The one-body marginal distribution of velocities dur-
ing the well known longstanding quasi-stationafyeta-
stable state of the isolated classical inert}Y ferromagneti-
cally coupled rotators localized on ddimensional lattice
can be anomalougi.e., non-Maxwellian. Indeed, it ap-

tropic parameteq is referred to in Ref[1] as an “undeter- proaches, for a non-zero-measure class of initial conditions

mined parameter.” Moreover, the author claims, having®’ the @=0 (V d) model and not too high :(/elocmes, a
proved that f must be auniversal constant, just like the d-€xponential distribution (we recall that e;=[1+(1
Boltzmann constark .. .. .” | have difficulty in unambigu- —d)Xx]"*~, henceef=¢") with g>1 [3]. If the energy
ously finding in the paper whether this kind of statementdistribution followed BG statistics, the one-body marginal
would only apply to Hamiltonian systems, or perhaps also talistribution of velocities ought to be quasi-Maxwellian
dissipative ones; to systems whose phase space is high dstrictly Maxwellian in the N—oo limit since then the
mensional, or perhaps also to the low-dimensional ones. Bgnicrocanonical-ensemble necessary cutoff in velocities di-
“undetermined,” it remains not totally clear whether the ex- verges, but it isnot As specifically discussed in R¢B], the
pression is used in the sense that “undeterminable,” or  numerical results are incompatible with BG statistics. How-
in the sense of “not yet determined.” However, if we put all ever, they do not yet prove that the one-body distribution of
this together, one might suspect that what is claimed in Refvelocities precisely is, for the canonical ensemble, the one
[1] is that itcanbe determined from first principles, and that predicted by nonextensive statistics. Indeed, considering the
the author has determined it to necessarilygel . appropriate limit N,M,N/M)—(w,%,) (N being the

To make this point transparent, we may illustrate the fachumber of rotators of the isolated system, andeing that
tual nonuniversalityof g by addressing the logisticlike fam- of a relatively small subsystem of) its crucial. Work along
ily of maps x;,,=1—a|x? whose usefulness in physics this line is in progress.
can hardly be conteste@t least forz=2). As conjectured (ii) In the same model, at high total energy, the largest
since 1997[5], numerically exhibited in many occasions Lyapunov exponent vanishes likeNtf wherex depends on
(e.g., in Refs.[6-9]), and analytically proved recently «/d [15,16. Also during the longstanding state, the largest
[10,11] on renormalization group grounds does depend on Lyapunov exponent vanishes, this time likeNTP [17]. It is
z, and is therefor@ot universal, in neat contrast with what is clear that, with a vanishing Lyapunov spectrum, the system
claimed in Ref.[1]. Its value forz=2 (i.e., the standard will be seriously prevented from satisfying Boltzmann’s
logistic map, as given by the sensitivity to the initial condi- “molecular chaos hypothesis,” hence ttsicrocanonical
tions, is q=0.2444g ... at theedge of chaode.g., a “equal probability” occupation of phase space.
=1.4011%...), whereas it isgq=1 for all values ofa for (ii ) In the longstanding regime of the=0 (Vd) model,
which the Lyapunov exponent is positie.g., fora=2). there isaging[18], something which igotally incompatible
We have illustrated the nonuniversality gffor nonlinear  with the usual notion of thermal equilibriurithe correlation
dynamical systems with its value at the edge of chaos of théunctions depend on the “waiting time,” and are in all cases
logistic map. It is perhaps worthy to notice that, since it hasgiven byg-exponential functions. Even at high total energy,
been proved to be analytically related to the Feigenbaurwhere the one-body distribution of velocities is Maxwellian,
universal constantrg [1/(1—q) =In ar/In 2], and since this and where there iso aging, the time correlation functions
constant is already known with not less than 1018 digits, wearestill given byg-exponentials wittg>1, instead of expo-
actually know this particular value a@f with the same num- nentials, which is the standard expectation in BG statistics.
ber of digits. Such a precision is self-explanatory with regard (iv) The temperaturex mean kinetic energy per partigle
to the fact thaty canbe determined from first principles and relaxes, after the metastable state observed in the one-

that it can be different from unity(also see Refd.12,13)). dimensional B=a<1 model, onto the BG temperature
Given the preceding illustrations of dissipative systemsthrough ag-exponential function wittg>1 [19].
and many others existing in the literatueeg., Ref[14]), it (v) In Lennard-Jones clusters of up kb=14 atoms, the

could hardly be a big surprise i#lsofor many-body Hamil-  distribution of the number of links per site has been numeri-
tonian systems turned out to be a nonuniversal index es- cally computed 20], where two local minima of the many-
sentially characterizing what we may consider as nonexterbody potential energy are “linked” if and only if they are
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separated by no more than one saddle-point. This distributior S A T A [ A [ A
is a q exponential withg=2, as can be checked through a 06 i
direct fitting. The possible connection with our present dis-
cussion comes from the fact that the average diameter of thr ~ °3F
cluster is (in units of atomic size of the order of 143 :
=2.4. Consequently, although the Lennard-Jones interactiorT
is nota long-range one thermodynamically speakiimgleed,
ald=6/3=2>1), it can effectively be considered as such
for small clusters, since all the atoms substantially interact
with all the others.

(vi) The distribution of the number of links per node for
the Albert-Barabasi growth mod¢P1] yielding scale-free i e B v S
networks is analytically established to be, in the stationary time
state, ag exponential withg=[2m(2—r)+1—p—r]/[m(3

Tmicrocanonical

N = 5000 (microcanonical) E
M =500 (canonical) 3

=2r)+1-p-r]=1, where (m,p,r) are microscopic pa- o8 u=0.69
H : : N = 5000 (microcanonical)
rameters of the model. If we associate @ 0 interaction " M =500 (canonical)

per link to this network, the just mentioned distribution also 7
represents the distribution of energies per node. Although
this is not the same distribution as that of the energy of °¢
microscopic states associated with a Hamiltonian, it is nei- T

S

(ITTTRRTETA INTTRRTOT] RTRRRRTT] AATTURTAT] AAARRRTUIOUE

S THIITHH[IHH”Hllll”H”]"”””I[HH[HTII"

ther very far from it[22]. S| I | A S el o L,
(vii) At this point let us mention some results, not many-
body problem, that have been obtained with the2 stan- 0. e
dard map and with d=4 set of two coupled standard maps. Toeoscanonica
Both systems areonservativeandsimplectic therefore hav- 0-31 - ll)j 1(')4 1:> l:)
ing the dynamical setup of a standard Hamiltonian. The time

=4 system undergoes Arnold diffusion as soon as the non-

linear coupling constard is different from zero; this guar- /G- 1. Time evolution of the temperaturd picrocanonical

. C e . =2K(N)/N [K(N)=total kinetic energy of one isolated system
which is singl nnected in ph e X
antees a chaotic sea ch is singly connected in phase Spagtérted with waterbag initial conditions &tonveniently scaled

(we may say thaa.=0). The structure is more complex for . )
. - . . ticl | to 0.6 € 5000 rotators; |
the d=2 case because no such diffusion is present; consis, o 9y Per particie equa to € rotators; green ling

. . . —and of the temperature T yonicam2K(M)/M  [K(M)
tently, ”unlessa is sufﬂqently large, disconnected chaotic _ subsystem total kinetic eneriggf a part of it (M =500 rotators:
“lakes” are present in the phase space; beloay

blue line. The M rotators were chosen such that their temperature

=0.97..., closed KAM regions emerge in the problem. + \as initially below (@) or above(b) that of the whole
The remark that we wish to do here is that, in strong analog¥ystem. It is particularly interesting the fact that, in cdlsg the

with the many-body long-range Hamiltonian cases we hav@emperature of the subsystemMfrotators crosses the BG tempera-
been discussing, both thé=2 and 4 maps present long- ture Tgzc=0.476 withoutany particular detection of it.

standing quasistationary statbsefore crossing over to the

stationary ones. The crossover timgssovediverges whem  ues of g and the zeroth principle of thermodynamidée
approaches, from above. This is very similar to what hap- now focus on a strong and crucial statement in Réf,

pens with the aboved(a) Hamiltonian, for which strong namely ‘... aBoltzmann-Gibbs thermometer would not be
numerical evidence exis{8,17,23 suggesting that,ssover ~ able to measure the temperature af-antropic system, and
diverges asN' *9—1)/(1— a/d) whenN— . the laws of thermodynamics would therefore fail to have

Although none of thegseven factual arguments that we general validity.”[1]. Here we shall present the resulg8o]
have just presented constitutes a proof, the set of them adlf molecular-dynamical simulation@sing only F=ma as
does provide, in our understanding, a quite strong suggestiamicroscopic dynamigswhich will essentially exhibit what is
that the longstanding quasistationary states existing in longelaimed in Ref[1] to be impossible. We shall illustrate this
range many-body Hamiltonians might be intimately con-with the isolatedy=0 model of planar rotators, and proceed
nected to the nonextensive statistics, wifidepending on through two steps.
basic model parameters suchdaand «. The entropic index We first show(Fig. 1) how the “temperature’{defined as
g would then characterizaniversality classes of nonexten- twice the instantaneous kinetic energy per partiofea rela-
sivity, the most famous of them being naturally the 1, tively small part of a large system relaxes onto the “tempera-
extensive, universality class. Such a viewpoint is also conture” of the large systemwhile this is in the quasistationary
sistent with the discussion of non-Gibbsian statistics preregime (where the system has been definitely shown to be
sented in Ref[24]. Last but by no means least, it is consis- nonBoltzmannian, and where it might well be described by
tent with Einstein’s 1910 criticism of the Boltzmann theq statisticg. We verify that the rest of the system acts for
principle S=kInW (lengthily commented upon in Ref. 6 of a generic small part of itself as a “thermostaity"total anal-
Ref. [1]). ogy with what happens in BG thermal equilibriufhis is

About thermal contact between systems with different valquite remarkable if we think that the system is in a ste
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T T T T T T T T T T T T T T T

06F u=0069
' N = 100000 (thermostat)
M =50 (thermometer)

may be made without clearly pointing out the mathematical
errors that should then exist in the available proofs of the
g-exponential distribution. Such proofs have been provided
by Abe and Rajagopdl25,26]; they are multiple, mutually
consistent, and generalize the well known proofs done, for
BG statistics, by Darwin and Fowléin 1922, Khinchin (in
1949 and Balian and Balazén 1987, respectively, using
the steepest-descent method, the laws of large numbers, and
the counting for the microcanonical ensemf8]. All these
proofs are ignored in Refl]. The critique therein developed
outcomes severely diminished.
T fhermomet Similarly, no mention at all is made in Rdfl] of the g
Tt“’“‘“‘ —— 15 point average generalizations of the Shann@h948 theorem, and of the
0-1102 — 1(1)3 — "';(1)4 E— 105 — Khinchin (1953 theorem, which are universally considered
time as parts of the foundations of BG statistical mechanics since
] ) they prove under what conditior8z s is unique. These twq
FIG. 2. Time evolution of the temperaturelyemosiat  generalization§27] analogously exhibit the necessary and
=2K(N)/N - [K(N)=thermostat total kinetic energy of ~one g iciant conditions associated with the uniquenesS.of
infinitely-range-coupled large systertthermostat started with Finally, no mention at all is made of the fact tha
V\;aterbig initial conditionsm_:rlooo 00 r;tzt(c')\;ls);“\g/llreen [Iznﬁ)d (Vg>0) ’shares withSg¢ three remarkable mathematical
0 the temperature thermomete™ : . - . .
=thermometer total kinetic energyof one first-neighbor-coupled ﬁ(ra%%esrltl?rsh(tahszt t?]faequ'rt: ggirgst(;::igi?tngglylS(;:‘nlsg?-
relatively small systenithermometer started at Maxwellian equi- (1) Stgbility 28] angfinpi)teness of entrogy prc;duction [:;er

librium at a temperature below that of the thermostdt<50 rota- 12 T
tors; blue and red lingsThe large system is in a quasistationary UNit time (see Ref.[29], among othefs The difficulty of

state(where it is aging its (conveniently scaledenergy per par- having such agreeable mathematical features can be per-
ticle equals 0.69. The thermometer-thermostat contact is assured §gived by the fact that Renyi entroizq. (19) of Ref. [1]),

only one bond per thermometer rotator, and starts at tigg..  [OF instance, satisfiesoneof them for abitraryg>0.

The intrathermostat and intrathermometer coupling constants equal It is perhaps for not paying due attention to all these theo-
unity; the thermostat-thermometer coupling constant equals 0.00rems that the cyclic argument involving Eq22)—(26) of

The thermalization of the thermometer occurs at the thermostaRef.[1] has been included in the critique. Indeed, that argu-
temperature, and up to tine=3x 10°, exhibits no detection of the ment uses Eq(22) to “prove” Eq. (26). Such a consistency
BG equilibrium temperatur@gs=0.476. The same phenomenon, can hardly be considered as surprising since the distribution
with the thermometer initial temperature beitegger than that of  in Eq. (22) is currently establishegrecisely using the BG
the thermostat, is not shown, because our numerical results suggesttropy i.e., the form of Eq(26). By the way, immediately
that theN>M>1 limit has to be satisfied in an even more stringent after Eq.(26) we read “providedf(1)= f(0)=0, which cor-
manner due to the relatively large fluctuationsTqfermometer FOr  responds to the requirement that the entropy vanishds at
clarity, not all the points of the curves have been represented, but o » |t is in fact only f(1)=0 which is related to the van-
they have been instead logarithmically decimated. ishing entropy aff =0. The propertyf(0)=0 has in general

different from thermal equilibrium that it even has aging!  nothing to do with it; it is instead related to tlespansibility
We then showFig. 2) how a BG thermometdits internal ~ of the entropy, i.e., the fact tha8(p;,p, ....pw.0)
degrees of freedom are thosefwét-neighbor-coupledner- ~ =S(P1,P2, - - - .Pw)-
tial rotators, hence def|n|t|ve|y @:1 Systen)] doesmeasure About the escort distributionThe preCise formulation of
the “temperature” of thenfinitely-range-coupledhertial ro- ~ honextensive statistical mechanics has, since 1988, evolved
tators during their quasistationary state, where the statistics 0Nng time in what concerns the way of imposing the auxil-
definitely non-Boltzmannian. In light of this evidence, it ap- iary constraints under whic, is optimized(see Refs. 1-3
pears that the zeroth principle of thermodynamics is eve®f [1]). The paradigmatic case occurs for the canonical en-
more general than the already important role that BG statissemble, where one must decide how to generalize the tradi-
tical mechanics reserves for it. Naturally, the fluctuations thational energy constraint. The correct manner is nowadays
we observe in both figures are expected to disappear in th@ccepted to be that indicated in Ref. 3[af, i.e., Eq.(3) of
(N,M,N/M)— (2,00,00) limit. Ref. [1], namely,
The facts that we have mentioned up to this point heavily
disqualify the essence of th_e _cri_tique p_resented in R&f.l SW
believe, nevertheless, that it is instructive to further analyze i=1Pi€i _ 3)
About the existing mathematical foundations of nonexten-
sive statistical mechanicét is essentially claimed in Ref1]
that it can be proved, from the very foundations of statisticalThis particular writing of the energy constraint has various
mechanics, that the only physically admissible method is thainteresting features. Let us mention three of them line
of BG. It is, however, intriguing how such a strong statementher convenient features can be found in Ref. 3 of REf.

03 |
?”! l“‘ll lll‘ lr‘

i ) “
0.2 d ‘ ' |

Tihermometer

—— Thermometer

b b b b v b o

038101-4



COMMENTS PHYSICAL REVIEW E 69, 038101 (2004
(i) It is precisely this form which emerges naturally within limy_ . limg_gcN* =lim._limy_..cN*=0, whereas, if
the steepest-descent profd5] of the q statistics. It is a o<a/d<1, limy ... lim¢ o cN* =0 but
trivial consequence of the fact thaiey/dx= (ef)“. _ lim¢_olimy_... cN* —oo. This is the basic point which is
(i) This particular form causes the theory to be, in whatmissed in Ref[1]. It appears that this simple mathematical
concerns the energy distribution, valid up teiaglevalue of  feature is deeply related to the fact that, for short-range in-
g, namely,preciselythat determined by the trivial constraint teractions, we expect BG statistigsdependentof the N
E}’ilpizl. Let us illustrate this in the continuum limit, fora .o, gndt—eo ordering, whereas, for long-range interac-
typical example where the density of statfig)=€” for € tjons, we still expect BG statistiamly if t diverges first, but
—» (yeR). Since we wishp(e) to be normalizable, we e expect something different, for example nonextensive
must impose thaf ;oqandeg(e)p(e). Sincep(e)xe ™9 gatistics, ifN diverges firstFor large systems, only the last
for e—co, it must beq<(2+y)/(1+7) (q<2 for the  possibility is physically achievable.
simple case of an asymptotically constant density of states, (ii) A remarkable foundational workuniqueness of the
i.e., y=0). Precisely the same upper boufat g is obtained  entropy S, and its optimizing distribution, stability o,
by imposing the finiteness of constraif®, as can be seen and others is available in the literature(e.g., Refs.
by analyzing [ consandl€g(€) e[ p(€)]19. In other words, and [25,27,2§) which generalizes step by step the available
interestingly enough, the use of escort distributions causef®undational work available for BG statistical mechanics. It
both constraints(norm and energyto be mathematically vyields a power law for the stationary-state energy distribu-
well defined in the theoryi.e., given byfinite number$ all  tion, instead of the usual BG exponential law.
the way up to a single upper bound for g (iii ) Figures 1 and 2 exhibit that, in striking contrast with
(iii ) This structure(based on escort distributionfor the ~ what is stated in Ref.1], the zeroth principle of thermody-
energy constraint allows the construction of a quite generahamics does appear to emerge in a indisputabipnBG
entropic form[31] which is extremized by the Beck-Cohen (metastable state. This fact further supports the possible
superstatistic§32], and which, quite remarkably, is stable thermodynamical connection of nonextensive statistical me-
(like Sy, and in variance with Renyi entropy chanics, which is already knowi33] to be consistent with
Conclusion:We have essentially argued here that the bathe first, second, and third thermodynamical principles.
sis of the critique in Ref{1] appears to be inconsistent with  Our overall conclusion is that, although several important
very many, and by now well established, physical and mathand/or interesting points related to nonextensive statistical
ematical facts. We have addressed not all but only the maimechanics still need further clarification, this theory un-
mispaths and inadvertences in Rif]. Let us now summa- doubtedly nowadays exhibits a sensible number of physically
rize the main points of the present Comment. and mathematically consistent results. Of course, as it has
(i) In what concerns a crucial difference between short-always been, only time will establish its degree of scientific
and long-range interactions, we stress that,aifd>1, utility in theoretical physics and elsewhere.
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